Chapter 9: Problem 40
If the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) has the same magnitude as the projection of \(\mathbf{v}\) onto \(\mathbf{u}\), can you conclude that \(\|\mathbf{u}\|=\|\mathbf{v}\|\) ? Explain.
Chapter 9: Problem 40
If the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) has the same magnitude as the projection of \(\mathbf{v}\) onto \(\mathbf{u}\), can you conclude that \(\|\mathbf{u}\|=\|\mathbf{v}\|\) ? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}=\frac{1}{2} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{3}{4} \mathbf{k}\) (a) \(6 \mathbf{i}-4 \mathbf{j}+9 \mathbf{k}\) (b) \(-\mathbf{i}+\frac{4}{3} \mathbf{j}-\frac{3}{2} \mathbf{k}\) (c) \(12 \mathbf{i}+9 \mathbf{k}\) (d) \(\frac{3}{4} \mathbf{i}-\mathbf{j}+\frac{9}{8} \mathbf{k}\)
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k} \\ \mathbf{v}=\mathbf{i}-3 \mathbf{j}+2 \mathbf{k} \end{array} $$
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{z}-3 \mathbf{u}=\mathbf{w}\)
Determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}\) has initial point (5,4,1) and terminal point (-2,-4,4) (a) \langle 7,6,2\rangle (b) \langle 14,16,-6\rangle
Prove the triangle inequality \(\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.