Chapter 9: Problem 4
Find the area of the region bounded by the graph of the polar equation using (a) a geometric formula and (b) integration. $$ r=3 \cos \theta $$
Chapter 9: Problem 4
Find the area of the region bounded by the graph of the polar equation using (a) a geometric formula and (b) integration. $$ r=3 \cos \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a regular tetrahedron with vertices \((0,0,0),(k, k, 0),(k, 0, k),\) and \((0, k, k),\) where \(k\) is a positive real number. (a) Sketch the graph of the tetrahedron. (b) Find the length of each edge. (c) Find the angle between any two edges. (d) Find the angle between the line segments from the centroid \((k / 2, k / 2, k / 2)\) to two vertices. This is the bond angle for a molecule such as \(\mathrm{CH}_{4}\) or \(\mathrm{PbCl}_{4}\), where the structure of the molecule is a tetrahedron.
In Exercises \(65-68,\) find the magnitude of \(v\). \(\mathbf{v}=\mathbf{i}-2 \mathbf{j}-3 \mathbf{k}\)
What can be said about the vectors \(\mathbf{u}\) and \(\mathbf{v}\) if (a) the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) equals \(\mathbf{u}\) and \((b)\) the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) equals \(\mathbf{0}\) ?
Determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}\) has initial point (5,4,1) and terminal point (-2,-4,4) (a) \langle 7,6,2\rangle (b) \langle 14,16,-6\rangle
Find the angle \(\theta\) between the vectors. $$ \mathbf{u}=\cos \left(\frac{\pi}{6}\right) \mathbf{i}+\sin \left(\frac{\pi}{6}\right) \mathbf{j}, \quad \mathbf{v}=\cos \left(\frac{3 \pi}{4}\right) \mathbf{i}+\sin \left(\frac{3 \pi}{4}\right) \mathbf{j} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.