Chapter 9: Problem 37
In Exercises \(35-40,\) find an equation in rectangular coordinates for the equation given in spherical coordinates, and sketch its graph. $$ \rho=4 \cos \phi $$
Chapter 9: Problem 37
In Exercises \(35-40,\) find an equation in rectangular coordinates for the equation given in spherical coordinates, and sketch its graph. $$ \rho=4 \cos \phi $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 57-60, determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathrm{z}=\langle 3,2,-5\rangle\) (a) \langle-6,-4,10\rangle (b) \(\left\langle 2, \frac{4}{3},-\frac{10}{3}\right\rangle\) (c) \langle 6,4,10\rangle (d) \langle 1,-4,2\rangle
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}-3 \mathbf{j} \end{array} $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\mathbf{i}, \quad \mathbf{v}=\mathbf{i} $$
In Exercises \(41-44,\) find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(3,2,0)}\) \(\frac{\text { Terminal Point }}{(4,1,6)}\)
In Exercises 75 and \(76,\) sketch the vector \(v\) and write its component form. \(\mathbf{v}\) lies in the \(y z\) -plane, has magnitude 2 , and makes an angle of \(30^{\circ}\) with the positive \(y\) -axis.
What do you think about this solution?
We value your feedback to improve our textbook solutions.