Chapter 9: Problem 37
If the magnitudes of two vectors are doubled, how will the magnitude of the cross product of the vectors change? Explain.
Chapter 9: Problem 37
If the magnitudes of two vectors are doubled, how will the magnitude of the cross product of the vectors change? Explain.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (2,-3,4),(0,1,2),(-1,2,0) $$
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=2 \mathbf{u}+4 \mathbf{v}-\mathbf{w}\)
Consider the vectors \(\mathbf{u}=\langle\cos \alpha, \sin \alpha, 0\rangle\) and \(\mathbf{v}=\langle\cos \beta, \sin \beta, 0\rangle\) where \(\alpha>\beta\) Find the dot product of the vectors and use the result to prove the identity \(\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta\).
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=\mathbf{u}-\mathbf{v}+2 \mathbf{w}\)
In Exercises 61 and \(62,\) use vectors to determine whether the points are collinear. (0,-2,-5),(3,4,4),(2,2,1)
What do you think about this solution?
We value your feedback to improve our textbook solutions.