Chapter 9: Problem 35
Find the length of the curve over the given interval. $$ \begin{array}{ll} \text { Polar Equation } & \text { Interval } \\ r=1+\sin \theta & 0 \leq \theta \leq 2 \pi \\ \end{array} $$
Chapter 9: Problem 35
Find the length of the curve over the given interval. $$ \begin{array}{ll} \text { Polar Equation } & \text { Interval } \\ r=1+\sin \theta & 0 \leq \theta \leq 2 \pi \\ \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=-\frac{1}{3}(\mathbf{i}-2 \mathbf{j}) \\ \mathbf{v}=2 \mathbf{i}-4 \mathbf{j} \end{array} $$
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=5 \mathbf{u}-3 \mathbf{v}-\frac{1}{2} \mathbf{w}\)
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+4 \mathbf{j} \\ \mathbf{v}=-2 \mathbf{j}+3 \mathbf{k} \end{array} $$
If the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) has the same magnitude as the projection of \(\mathbf{v}\) onto \(\mathbf{u}\), can you conclude that \(\|\mathbf{u}\|=\|\mathbf{v}\|\) ? Explain.
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.