Chapter 9: Problem 35
Complete the square to write the equation of the sphere in standard form. Find the center and radius. \(9 x^{2}+9 y^{2}+9 z^{2}-6 x+18 y+1=0\)
Chapter 9: Problem 35
Complete the square to write the equation of the sphere in standard form. Find the center and radius. \(9 x^{2}+9 y^{2}+9 z^{2}-6 x+18 y+1=0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=5 \mathbf{i}+3 \mathbf{j}-\mathbf{k} $$
Prove the triangle inequality \(\|\mathbf{u}+\mathbf{v}\| \leq\|\mathbf{u}\|+\|\mathbf{v}\|\).
In Exercises \(51-56,\) find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=\mathbf{u}-\mathbf{v}\)
Find the angle \(\theta\) between the vectors. $$ \mathbf{u}=\cos \left(\frac{\pi}{6}\right) \mathbf{i}+\sin \left(\frac{\pi}{6}\right) \mathbf{j}, \quad \mathbf{v}=\cos \left(\frac{3 \pi}{4}\right) \mathbf{i}+\sin \left(\frac{3 \pi}{4}\right) \mathbf{j} $$
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{aligned} &\mathbf{u}=\mathbf{j}+6 \mathbf{k}\\\ &\mathbf{v}=\mathbf{i}-2 \mathbf{j}-\mathbf{k} \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.