Chapter 9: Problem 35
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,1,2\rangle, \quad \mathbf{v}=\langle 0,3,4\rangle $$
Chapter 9: Problem 35
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,1,2\rangle, \quad \mathbf{v}=\langle 0,3,4\rangle $$
All the tools & learning materials you need for study success - in one app.
Get started for freeThe vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (2,-3,4),(0,1,2),(-1,2,0) $$
In Exercises \(25-28,\) find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\mathbf{i}+2 \mathbf{j}+2 \mathbf{k} $$
In Exercises 7 and \(8,\) find \(u \cdot v\). \(\|\mathbf{u}\|=8,\|\mathbf{v}\|=5,\) and the angle between \(\mathbf{u}\) and \(\mathbf{v}\) is \(\pi / 3\).
The vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (-3,0,0),(0,0,0),(1,2,3) $$
In Exercises 31 and 32 , find the component of \(u\) that is orthogonal to \(\mathbf{v},\) given \(\mathbf{w}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). $$ \mathbf{u}=\langle 6,7\rangle, \quad \mathbf{v}=\langle 1,4\rangle, \quad \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\langle 2,8\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.