Chapter 9: Problem 34
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,-3\rangle, \quad \mathbf{v}=\langle 3,2\rangle $$
Chapter 9: Problem 34
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,-3\rangle, \quad \mathbf{v}=\langle 3,2\rangle $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 49 and \(50,\) find each scalar multiple of \(v\) and sketch its graph. \(\mathbf{v}=\langle 1,2,2\rangle\) (a) \(2 \mathbf{v}\) (b) \(-\mathbf{v}\) (c) \(\frac{3}{2} \mathbf{v}\) (d) \(0 \mathbf{v}\)
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{u}+\mathbf{v}-\mathbf{w}+3 \mathbf{z}=\mathbf{0}\)
Find the angle between a cube's diagonal and one of its edges.
State the definition of parallel vectors.
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{aligned} &\mathbf{u}=\mathbf{j}+6 \mathbf{k}\\\ &\mathbf{v}=\mathbf{i}-2 \mathbf{j}-\mathbf{k} \end{aligned} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.