Chapter 9: Problem 32
Use a computer algebra system to graph the pair of intersecting lines and find the point of intersection. $$ \begin{array}{l} x=2 t-1, y=-4 t+10, z=t \\ x=-5 s-12, y=3 s+11, z=-2 s-4 \end{array} $$
Chapter 9: Problem 32
Use a computer algebra system to graph the pair of intersecting lines and find the point of intersection. $$ \begin{array}{l} x=2 t-1, y=-4 t+10, z=t \\ x=-5 s-12, y=3 s+11, z=-2 s-4 \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 69 and \(70,\) find a unit vector \((a)\) in the direction of \(\mathbf{u}\) and \((\mathbf{b})\) in the direction opposite \(\mathbf{u}\) \(\mathbf{u}=\langle 2,-1,2\rangle\)
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\langle 0,6,-4\rangle $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}+\mathbf{j}-2 \mathbf{k} \\ \mathbf{v}=\mathbf{i}-3 \mathbf{j}+2 \mathbf{k} \end{array} $$
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,-3\rangle, \quad \mathbf{v}=\langle 3,2\rangle $$
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}+\mathbf{j}-\mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.