Chapter 9: Problem 3
Find the cross product of the unit vectors and sketch your result. $$ \mathbf{j} \times \mathbf{k} $$
Chapter 9: Problem 3
Find the cross product of the unit vectors and sketch your result. $$ \mathbf{j} \times \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for free(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,1,2\rangle, \quad \mathbf{v}=\langle 0,3,4\rangle $$
A toy wagon is pulled by exerting a force of 25 pounds on a handle that makes a \(20^{\circ}\) angle with the horizontal. Find the work done in pulling the wagon 50 feet.
Writing The initial and terminal points of the vector \(\mathbf{v}\) are \(\left(x_{1}, y_{1}, z_{1}\right)\) and \((x, y, z) .\) Describe the set of all points \((x, y, z)\) such that \(\|\mathbf{v}\|=4\)
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 2,-3,1\rangle \\ \mathbf{v}=\langle-1,-1,-1\rangle \end{array} $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \mathbf{u}=\langle-4,8\rangle, \quad \mathbf{v}=\langle 6,3\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.