Chapter 9: Problem 29
In Exercises 29 and 30 . find the direction angles of the vector. $$ \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k} $$
Chapter 9: Problem 29
In Exercises 29 and 30 . find the direction angles of the vector. $$ \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}-2 \mathbf{k} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 7 and \(8,\) find \(u \cdot v\). \(\|\mathbf{u}\|=8,\|\mathbf{v}\|=5,\) and the angle between \(\mathbf{u}\) and \(\mathbf{v}\) is \(\pi / 3\).
In Exercises 63 and 64 , sketch the solid that has the given description in spherical coordinates. $$ 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 6,0 \leq \rho \leq a \sec \phi $$
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(1,-2,4)}\) \(\frac{\text { Terminal Point }}{(2,4,-2)}\)
Give the standard equation of a sphere of radius \(r\), centered at \(\left(x_{0}, y_{0}, z_{0}\right)\)
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=\langle 1,1,1\rangle \\ \mathbf{v}=\langle 2,1,-1\rangle \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.