Chapter 9: Problem 29
In Exercises \(27-30,\) sketch the region bounded by the graphs of the equations. $$ x^{2}+y^{2}=1, x+z=2, z=0 $$
Chapter 9: Problem 29
In Exercises \(27-30,\) sketch the region bounded by the graphs of the equations. $$ x^{2}+y^{2}=1, x+z=2, z=0 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(4,-5,2)}\) \(\frac{\text { Terminal Point }}{(-1,7,-3)}\)
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(-4,3,1)}\) \(\frac{\text { Terminal Point }}{(-5,3,0)}\)
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\langle 0,6,-4\rangle $$
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-3 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-2 \mathbf{j}+\mathbf{k} \end{array} $$
Consider the vectors \(\mathbf{u}=\langle\cos \alpha, \sin \alpha, 0\rangle\) and \(\mathbf{v}=\langle\cos \beta, \sin \beta, 0\rangle\) where \(\alpha>\beta\) Find the dot product of the vectors and use the result to prove the identity \(\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.