Chapter 9: Problem 28
Find the area of the region. Inside \(r=a(1+\cos \theta)\) and outside \(r=a \cos \theta\)
Chapter 9: Problem 28
Find the area of the region. Inside \(r=a(1+\cos \theta)\) and outside \(r=a \cos \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=5 \mathbf{i}+3 \mathbf{j}-\mathbf{k} $$
In Exercises 63 and 64 , sketch the solid that has the given description in spherical coordinates. $$ 0 \leq \theta \leq 2 \pi, 0 \leq \phi \leq \pi / 6,0 \leq \rho \leq a \sec \phi $$
Find \((\mathbf{a}) \mathbf{u} \cdot \mathbf{v},(\mathbf{b}) \mathbf{u} \cdot \mathbf{u},(\mathbf{c})\|\mathbf{u}\|^{2},(\mathbf{d})(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}\) and \((e) u \cdot(2 v)\). $$ \begin{array}{l} \mathbf{u}=2 \mathbf{i}-\mathbf{j}+\mathbf{k} \\ \mathbf{v}=\mathbf{i}-\mathbf{k} \end{array} $$
Find the angle \(\theta\) between the vectors. $$ \mathbf{u}=\cos \left(\frac{\pi}{6}\right) \mathbf{i}+\sin \left(\frac{\pi}{6}\right) \mathbf{j}, \quad \mathbf{v}=\cos \left(\frac{3 \pi}{4}\right) \mathbf{i}+\sin \left(\frac{3 \pi}{4}\right) \mathbf{j} $$
Prove that \(\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.