Chapter 9: Problem 27
In Exercises \(25-28,\) convert the point from spherical coordinates to rectangular coordinates. $$ (5, \pi / 4,3 \pi / 4) $$
Chapter 9: Problem 27
In Exercises \(25-28,\) convert the point from spherical coordinates to rectangular coordinates. $$ (5, \pi / 4,3 \pi / 4) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 61 and \(62,\) sketch the solid that has the given description in cylindrical coordinates. $$ 0 \leq \theta \leq 2 \pi, 2 \leq r \leq 4, z^{2} \leq-r^{2}+6 r-8 $$
In Exercises \(9-14,\) find the angle \(\theta\) between the vectors. $$ \mathbf{u}=3 \mathbf{i}+\mathbf{j}, \mathbf{v}=-2 \mathbf{i}+4 \mathbf{j} $$
Find the angle between the diagonal of a cube and the diagonal of one of its sides.
Let \(\mathbf{u}=\mathbf{i}+\mathbf{j}, \mathbf{v}=\mathbf{j}+\mathbf{k},\) and \(\mathbf{w}=a \mathbf{u}+b \mathbf{v} .\) (a) Sketch \(\mathbf{u}\) and \(\mathbf{v}\). (b) If \(\mathbf{w}=\mathbf{0}\), show that \(a\) and \(b\) must both be zero. (c) Find \(a\) and \(b\) such that \(\mathbf{w}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}\). (d) Show that no choice of \(a\) and \(b\) yields \(\mathbf{w}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}\).
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 1,0,4\rangle, \quad \mathbf{v}=\langle 3,0,2\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.