Chapter 9: Problem 25
Verify that the points are the vertices of a parallelogram, and find its area. (1,1,1),(2,3,4),(6,5,2),(7,7,5)
Chapter 9: Problem 25
Verify that the points are the vertices of a parallelogram, and find its area. (1,1,1),(2,3,4),(6,5,2),(7,7,5)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=\langle 1,1,1\rangle \\ \mathbf{v}=\langle 2,1,-1\rangle \end{array} $$
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,1,2\rangle, \quad \mathbf{v}=\langle 0,3,4\rangle $$
Find the angle between a cube's diagonal and one of its edges.
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=2 \mathbf{u}+4 \mathbf{v}-\mathbf{w}\)
Prove the Cauchy-Schwarz Inequality \(|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| .\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.