Chapter 9: Problem 19
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 2,-3,1\rangle \\ \mathbf{v}=\langle-1,-1,-1\rangle \end{array} $$
Chapter 9: Problem 19
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 2,-3,1\rangle \\ \mathbf{v}=\langle-1,-1,-1\rangle \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=-\frac{1}{3}(\mathbf{i}-2 \mathbf{j}) \\ \mathbf{v}=2 \mathbf{i}-4 \mathbf{j} \end{array} $$
Give the formula for the distance between the points \(\left(x_{1}, y_{1}, z_{1}\right)\) and \(\left(x_{2}, y_{2}, z_{2}\right)\)
In Exercises 33-36, (a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 2,3\rangle, \quad \mathbf{v}=\langle 5,1\rangle $$
Consider a regular tetrahedron with vertices \((0,0,0),(k, k, 0),(k, 0, k),\) and \((0, k, k),\) where \(k\) is a positive real number. (a) Sketch the graph of the tetrahedron. (b) Find the length of each edge. (c) Find the angle between any two edges. (d) Find the angle between the line segments from the centroid \((k / 2, k / 2, k / 2)\) to two vertices. This is the bond angle for a molecule such as \(\mathrm{CH}_{4}\) or \(\mathrm{PbCl}_{4}\), where the structure of the molecule is a tetrahedron.
State the definition of parallel vectors.
What do you think about this solution?
We value your feedback to improve our textbook solutions.