Chapter 9: Problem 18
Find the points of intersection of the graphs of the equations. $$ \begin{array}{l} \theta=\frac{\pi}{4} \\ r=2 \end{array} $$
Chapter 9: Problem 18
Find the points of intersection of the graphs of the equations. $$ \begin{array}{l} \theta=\frac{\pi}{4} \\ r=2 \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+4 \mathbf{j} \\ \mathbf{v}=-2 \mathbf{j}+3 \mathbf{k} \end{array} $$
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(2 \mathbf{u}+\mathbf{v}-\mathbf{w}+3 \mathbf{z}=\mathbf{0}\)
Determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}=\frac{1}{2} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{3}{4} \mathbf{k}\) (a) \(6 \mathbf{i}-4 \mathbf{j}+9 \mathbf{k}\) (b) \(-\mathbf{i}+\frac{4}{3} \mathbf{j}-\frac{3}{2} \mathbf{k}\) (c) \(12 \mathbf{i}+9 \mathbf{k}\) (d) \(\frac{3}{4} \mathbf{i}-\mathbf{j}+\frac{9}{8} \mathbf{k}\)
Use vectors to determine whether the points are collinear. (0,0,0),(1,3,-2),(2,-6,4)
In Exercises 63 and 64 , sketch the solid that has the given description in spherical coordinates. $$ 0 \leq \theta \leq \pi, 0 \leq \phi \leq \pi / 2,1 \leq \rho \leq 3 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.