Chapter 9: Problem 18
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}+\mathbf{j}-\mathbf{k} \end{array} $$
Chapter 9: Problem 18
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=-2 \mathbf{i}+3 \mathbf{j}-\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}+\mathbf{j}-\mathbf{k} \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=2 \mathbf{u}+4 \mathbf{v}-\mathbf{w}\)
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(4,-5,2)}\) \(\frac{\text { Terminal Point }}{(-1,7,-3)}\)
The vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (2,-7,3),(-1,5,8),(4,6,-1) $$
Prove that \(\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}\).
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+4 \mathbf{j} \\ \mathbf{v}=-2 \mathbf{j}+3 \mathbf{k} \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.