Chapter 9: Problem 16
Find the points of intersection of the graphs of the equations. $$ \begin{array}{l} r=1+\cos \theta \\ r=3 \cos \theta \end{array} $$
Chapter 9: Problem 16
Find the points of intersection of the graphs of the equations. $$ \begin{array}{l} r=1+\cos \theta \\ r=3 \cos \theta \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}=\frac{1}{2} \mathbf{i}-\frac{2}{3} \mathbf{j}+\frac{3}{4} \mathbf{k}\) (a) \(6 \mathbf{i}-4 \mathbf{j}+9 \mathbf{k}\) (b) \(-\mathbf{i}+\frac{4}{3} \mathbf{j}-\frac{3}{2} \mathbf{k}\) (c) \(12 \mathbf{i}+9 \mathbf{k}\) (d) \(\frac{3}{4} \mathbf{i}-\mathbf{j}+\frac{9}{8} \mathbf{k}\)
(a) find the unit tangent vectors to each curve at their points of intersection and (b) find the angles \(\left(0 \leq \theta \leq 90^{\circ}\right)\) between the curves at their points of intersection. $$ y=x^{3}, \quad y=x^{1 / 3} $$
The vertices of a triangle are given. Determine whether the triangle is an acute triangle, an obtuse triangle, or a right triangle. Explain your reasoning. $$ (2,-7,3),(-1,5,8),(4,6,-1) $$
In Exercises 77 and \(78,\) use vectors to find the point that lies two-thirds of the way from \(P\) to \(Q\). \(P(4,3,0), \quad Q(1,-3,3)\)
(a) find the projection of \(\mathbf{u}\) onto \(\mathbf{v}\), and (b) find the vector component of u orthogonal to v. $$ \mathbf{u}=\langle 1,0,4\rangle, \quad \mathbf{v}=\langle 3,0,2\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.