Chapter 9: Problem 15
Find the points of intersection of the graphs of the equations. $$ \begin{array}{l} r=4-5 \sin \theta \\ r=3 \sin \theta \end{array} $$
Chapter 9: Problem 15
Find the points of intersection of the graphs of the equations. $$ \begin{array}{l} r=4-5 \sin \theta \\ r=3 \sin \theta \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeProve that \(\|\mathbf{u}-\mathbf{v}\|^{2}=\|\mathbf{u}\|^{2}+\|\mathbf{v}\|^{2}-2 \mathbf{u} \cdot \mathbf{v}\).
In Exercises \(9-14,\) find the angle \(\theta\) between the vectors. $$ \mathbf{u}=3 \mathbf{i}+\mathbf{j}, \mathbf{v}=-2 \mathbf{i}+4 \mathbf{j} $$
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=-\frac{1}{3}(\mathbf{i}-2 \mathbf{j}) \\ \mathbf{v}=2 \mathbf{i}-4 \mathbf{j} \end{array} $$
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(-4,3,1)}\) \(\frac{\text { Terminal Point }}{(-5,3,0)}\)
If the projection of \(\mathbf{u}\) onto \(\mathbf{v}\) has the same magnitude as the projection of \(\mathbf{v}\) onto \(\mathbf{u}\), can you conclude that \(\|\mathbf{u}\|=\|\mathbf{v}\|\) ? Explain.
What do you think about this solution?
We value your feedback to improve our textbook solutions.