Chapter 9: Problem 14
Determine the location of a point \((x, y, z)\) that satisfies the condition(s). \(|x|>4\)
Chapter 9: Problem 14
Determine the location of a point \((x, y, z)\) that satisfies the condition(s). \(|x|>4\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(1,-2,4)}\) \(\frac{\text { Terminal Point }}{(2,4,-2)}\)
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\langle 0,6,-4\rangle $$
What is known about \(\theta,\) the angle between two nonzero vectors \(\mathbf{u}\) and \(\mathbf{v},\) if (a) \(\mathbf{u} \cdot \mathbf{v}=0\) ? (b) \(\mathbf{u} \cdot \mathbf{v}>0 ?\) (c) \(\mathbf{u} \cdot \mathbf{v}<0 ?\)
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=5 \mathbf{u}-3 \mathbf{v}-\frac{1}{2} \mathbf{w}\)
Determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 2,-3,1\rangle \\ \mathbf{v}=\langle-1,-1,-1\rangle \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.