Chapter 9: Problem 12
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}-3 \mathbf{j} \end{array} $$
Chapter 9: Problem 12
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=3 \mathbf{i}+2 \mathbf{j}+\mathbf{k} \\ \mathbf{v}=2 \mathbf{i}-3 \mathbf{j} \end{array} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeGive the formula for the distance between the points \(\left(x_{1}, y_{1}, z_{1}\right)\) and \(\left(x_{2}, y_{2}, z_{2}\right)\)
In Exercises 77 and \(78,\) use vectors to find the point that lies two-thirds of the way from \(P\) to \(Q\). \(P(4,3,0), \quad Q(1,-3,3)\)
In Exercises 7 and \(8,\) find \(u \cdot v\). \(\|\mathbf{u}\|=8,\|\mathbf{v}\|=5,\) and the angle between \(\mathbf{u}\) and \(\mathbf{v}\) is \(\pi / 3\).
Prove the Cauchy-Schwarz Inequality \(|\mathbf{u} \cdot \mathbf{v}| \leq\|\mathbf{u}\|\|\mathbf{v}\| .\)
Find the angle between a cube's diagonal and one of its edges.
What do you think about this solution?
We value your feedback to improve our textbook solutions.