Chapter 9: Problem 12
Determine the location of a point \((x, y, z)\) that satisfies the condition(s). \(x<0\)
Chapter 9: Problem 12
Determine the location of a point \((x, y, z)\) that satisfies the condition(s). \(x<0\)
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 57-60, determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathrm{z}=\langle 3,2,-5\rangle\) (a) \langle-6,-4,10\rangle (b) \(\left\langle 2, \frac{4}{3},-\frac{10}{3}\right\rangle\) (c) \langle 6,4,10\rangle (d) \langle 1,-4,2\rangle
Find the vector \(z,\) given that \(\mathbf{u}=\langle 1,2,3\rangle\) \(\mathbf{v}=\langle 2,2,-1\rangle,\) and \(\mathbf{w}=\langle 4,0,-4\rangle\) \(\mathbf{z}=5 \mathbf{u}-3 \mathbf{v}-\frac{1}{2} \mathbf{w}\)
Find the component form and magnitude of the vector \(u\) with the given initial and terminal points. Then find a unit vector in the direction of \(\mathbf{u}\). \(\frac{\text { Initial Point }}{(1,-2,4)}\) \(\frac{\text { Terminal Point }}{(2,4,-2)}\)
Find the component of \(u\) that is orthogonal to \(\mathbf{v},\) given \(\mathbf{w}_{\mathbf{1}}=\operatorname{proj}_{\mathbf{v}} \mathbf{u}\). $$ \mathbf{u}=\langle 8,2,0\rangle, \quad \mathbf{v}=\langle 2,1,-1\rangle, \quad \operatorname{proj}_{\mathbf{v}} \mathbf{u}=\langle 6,3,-3\rangle $$
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\langle 0,6,-4\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.