Chapter 9: Problem 103
Describe a method for determining when two planes \(a_{1} x+b_{1} y+c_{1} z+d_{1}=0\) and \(a_{2} x+b_{2} y+c_{2} z+d_{2}=0\) are (a) parallel and (b) perpendicular. Explain your reasoning.
Chapter 9: Problem 103
Describe a method for determining when two planes \(a_{1} x+b_{1} y+c_{1} z+d_{1}=0\) and \(a_{2} x+b_{2} y+c_{2} z+d_{2}=0\) are (a) parallel and (b) perpendicular. Explain your reasoning.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse vectors to prove that the diagonals of a rhombus are perpendicular.
Let \(\mathbf{u}=\mathbf{i}+\mathbf{j}, \mathbf{v}=\mathbf{j}+\mathbf{k},\) and \(\mathbf{w}=a \mathbf{u}+b \mathbf{v} .\) (a) Sketch \(\mathbf{u}\) and \(\mathbf{v}\). (b) If \(\mathbf{w}=\mathbf{0}\), show that \(a\) and \(b\) must both be zero. (c) Find \(a\) and \(b\) such that \(\mathbf{w}=\mathbf{i}+2 \mathbf{j}+\mathbf{k}\). (d) Show that no choice of \(a\) and \(b\) yields \(\mathbf{w}=\mathbf{i}+2 \mathbf{j}+3 \mathbf{k}\).
Let \(\mathbf{r}=\langle x, y, z\rangle\) and \(\mathbf{r}_{0}=\langle 1,1,1\rangle .\) Describe the set of all points \((x, y, z)\) such that \(\left\|\mathbf{r}-\mathbf{r}_{0}\right\|=2\)
Determine which of the vectors is (are) parallel to \(\mathrm{z}\). Use a graphing utility to confirm your results. \(\mathbf{z}\) has initial point (5,4,1) and terminal point (-2,-4,4) (a) \langle 7,6,2\rangle (b) \langle 14,16,-6\rangle
Find the angle \(\theta\) between the vectors. $$ \begin{array}{l} \mathbf{u}=\langle 1,1,1\rangle \\ \mathbf{v}=\langle 2,1,-1\rangle \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.