Chapter 9: Problem 10
Determine the location of a point \((x, y, z)\) that satisfies the condition(s). \(z=-3\)
Chapter 9: Problem 10
Determine the location of a point \((x, y, z)\) that satisfies the condition(s). \(z=-3\)
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the angle \(\theta\) between the vectors. $$ \mathbf{u}=\cos \left(\frac{\pi}{6}\right) \mathbf{i}+\sin \left(\frac{\pi}{6}\right) \mathbf{j}, \quad \mathbf{v}=\cos \left(\frac{3 \pi}{4}\right) \mathbf{i}+\sin \left(\frac{3 \pi}{4}\right) \mathbf{j} $$
In Exercises 45 and \(46,\) determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. $$ \text { If } \mathbf{u} \cdot \mathbf{v}=\mathbf{u} \cdot \mathbf{w} \text { and } \mathbf{u} \neq \mathbf{0}, \text { then } \mathbf{v}=\mathbf{w} $$
Use vectors to determine whether the points are collinear. (0,0,0),(1,3,-2),(2,-6,4)
In Exercises \(15-20\), determine whether \(\mathbf{u}\) and \(\mathbf{v}\) are orthogonal parallel, or neither. $$ \begin{array}{l} \mathbf{u}=\langle 4,3\rangle \\ \mathbf{v}=\left\langle\frac{1}{2},-\frac{2}{3}\right\rangle \end{array} $$
Find the direction cosines of \(u\) and demonstrate that the sum of the squares of the direction cosines is 1. $$ \mathbf{u}=\langle a, b, c\rangle $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.