Chapter 8: Problem 9
Find the area of the region. Interior of \(r=1-\sin \theta\)
Chapter 8: Problem 9
Find the area of the region. Interior of \(r=1-\sin \theta\)
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=3 t-1, \quad y=2 t+1 $$
A curve called the folium of Descartes can be represented by the parametric equations \(x=\frac{3 t}{1+t^{3}} \quad\) and \(y=\frac{3 t^{2}}{1+t^{3}}\) (a) Convert the parametric equations to polar form. (b) Sketch the graph of the polar equation from part (a). (c) Use a graphing utility to approximate the area enclosed by the loop of the curve.
Find the area of the circle given by \(r=\sin \theta+\cos \theta\). Check your result by converting the polar equation to rectangular form, then using the formula for the area of a circle.
Use a graphing utility to graph the polar equation over the given interval. Use the integration capabilities of the graphing utility to approximate the length of the curve accurate to two decimal places. $$ r=2 \sin (2 \cos \theta), \quad 0 \leq \theta \leq \pi $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{4}{1+2 \cos \theta}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.