Chapter 8: Problem 75
Sketch a graph of the polar equation. $$ r^{2}=4 \cos 2 \theta $$
Chapter 8: Problem 75
Sketch a graph of the polar equation. $$ r^{2}=4 \cos 2 \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeTrue or False. Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. The graph of the parametric equations \(x=t^{2}\) and \(y=t^{2}\) is the line \(y=x\).
The curve represented by the equation \(r=a \theta,\) where \(a\) is a constant, is called the spiral of Archimedes. (a) Use a graphing utility to graph \(r=\theta,\) where \(\theta \geq 0\). What happens to the graph of \(r=a \theta\) as \(a\) increases? What happens if \(\theta \leq 0 ?\) (b) Determine the points on the spiral \(r=a \theta(a>0, \theta \geq 0)\) where the curve crosses the polar axis. (c) Find the length of \(r=\theta\) over the interval \(0 \leq \theta \leq 2 \pi\). (d) Find the area under the curve \(r=\theta\) for \(0 \leq \theta \leq 2 \pi\).
Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the polar equation when (a) \(e=1,\) (b) \(e=0.5\) and \((\mathrm{c}) e=1.5 .\) Identify the conic. \(r=\frac{2 e}{1-e \sin \theta}\)
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=4 \sec \theta, \quad y=3 \tan \theta $$
Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the polar equation when (a) \(e=1,\) (b) \(e=0.5\) and \((\mathrm{c}) e=1.5 .\) Identify the conic. \(r=\frac{2 e}{1-e \cos \theta}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.