Chapter 8: Problem 71
Sketch a graph of the polar equation. $$ r=3 \csc \theta $$
Chapter 8: Problem 71
Sketch a graph of the polar equation. $$ r=3 \csc \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{-6}{3+7 \sin \theta}\)
Use a graphing utility to graph the polar equation over the given interval. Use the integration capabilities of the graphing utility to approximate the length of the curve accurate to two decimal places. $$ r=2 \sin (2 \cos \theta), \quad 0 \leq \theta \leq \pi $$
Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the polar equation when (a) \(e=1,\) (b) \(e=0.5\) and \((\mathrm{c}) e=1.5 .\) Identify the conic. \(r=\frac{2 e}{1-e \sin \theta}\)
Give the integral formulas for the area of the surface of revolution formed when the graph of \(r=f(\theta)\) is revolved about (a) the \(x\) -axis and (b) the \(y\) -axis.
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ \begin{array}{l} x=4+2 \cos \theta \\ y=-1+\sin \theta \end{array} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.