Chapter 8: Problem 64
Sketch a graph of the polar equation and find the tangents at the pole. $$ r=-\sin 5 \theta $$
Chapter 8: Problem 64
Sketch a graph of the polar equation and find the tangents at the pole. $$ r=-\sin 5 \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(17-20,\) use a graphing utility to graph the polar equation. Identify the graph. \(r=\frac{2}{2+3 \sin \theta}\)
In Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Parabola }} \quad \frac{\text { Eccentricity }}{e=1} \quad \frac{\text { Directrix }}{x=1}\)
A curve called the folium of Descartes can be represented by the parametric equations \(x=\frac{3 t}{1+t^{3}} \quad\) and \(y=\frac{3 t^{2}}{1+t^{3}}\) (a) Convert the parametric equations to polar form. (b) Sketch the graph of the polar equation from part (a). (c) Use a graphing utility to approximate the area enclosed by the loop of the curve.
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{6}{1+\cos \theta}\)
What conic section does \(r=a \sin \theta+b \cos \theta\) represent? \(?\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.