Chapter 8: Problem 57
Use a graphing utility to graph the polar equation and find all points of horizontal tangency. $$ r=4 \sin \theta \cos ^{2} \theta $$
Chapter 8: Problem 57
Use a graphing utility to graph the polar equation and find all points of horizontal tangency. $$ r=4 \sin \theta \cos ^{2} \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{5}{-1+2 \cos \theta}\)
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=2 t^{2}, \quad y=t^{4}+1 $$
In Exercises \(17-20,\) use a graphing utility to graph the polar equation. Identify the graph. \(r=\frac{2}{2+3 \sin \theta}\)
In Exercises 57 and \(58,\) let \(r_{0}\) represent the distance from the focus to the nearest vertex, and let \(r_{1}\) represent the distance from the focus to the farthest vertex. Show that the eccentricity of a hyperbola can be written as \(e=\frac{r_{1}+r_{0}}{r_{1}-r_{0}} .\) Then show that \(\frac{r_{1}}{r_{0}}=\frac{e+1}{e-1}\).
In Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Ellipse }} \quad \frac{\text { Eccentricity }}{e=\frac{3}{4}} \quad \frac{\text { Directrix }}{x=-2}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.