Chapter 8: Problem 56
Find the area of the circle given by \(r=\sin \theta+\cos \theta\). Check your result by converting the polar equation to rectangular form, then using the formula for the area of a circle.
Chapter 8: Problem 56
Find the area of the circle given by \(r=\sin \theta+\cos \theta\). Check your result by converting the polar equation to rectangular form, then using the formula for the area of a circle.
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=2 \cos \theta, \quad y=6 \sin \theta $$
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=e^{-t}, \quad y=e^{2 t}-1 $$
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Prolate cycloid: } x=2 \theta-4 \sin \theta, \quad y=2-4 \cos \theta $$
Graphical Reasoning In Exercises 1-4, use a graphing utility to graph the polar equation when (a) \(e=1,\) (b) \(e=0.5\) and \((\mathrm{c}) e=1.5 .\) Identify the conic. \(r=\frac{2 e}{1+e \cos \theta}\)
In Exercises 57 and \(58,\) let \(r_{0}\) represent the distance from the focus to the nearest vertex, and let \(r_{1}\) represent the distance from the focus to the farthest vertex. Show that the eccentricity of a hyperbola can be written as \(e=\frac{r_{1}+r_{0}}{r_{1}-r_{0}} .\) Then show that \(\frac{r_{1}}{r_{0}}=\frac{e+1}{e-1}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.