Chapter 8: Problem 52
Give the integral formulas for the area of the surface of revolution formed when the graph of \(r=f(\theta)\) is revolved about (a) the \(x\) -axis and (b) the \(y\) -axis.
Chapter 8: Problem 52
Give the integral formulas for the area of the surface of revolution formed when the graph of \(r=f(\theta)\) is revolved about (a) the \(x\) -axis and (b) the \(y\) -axis.
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=e^{2 t}, \quad y=e^{t} $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{5}{5+3 \sin \theta}\)
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{3}{2+6 \sin \theta}\)
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{6}{2+\cos \theta}\)
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Hypocycloid: } x=3 \cos ^{3} \theta, \quad y=3 \sin ^{3} \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.