Chapter 8: Problem 5
Use the angle feature of a graphing utility to find the rectangular coordinates for the point given in polar coordinates. Plot the point. $$ (5,3 \pi / 4) $$
Chapter 8: Problem 5
Use the angle feature of a graphing utility to find the rectangular coordinates for the point given in polar coordinates. Plot the point. $$ (5,3 \pi / 4) $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain how the graph of each conic differs from the graph of \(r=\frac{4}{1+\sin \theta} .\) (a) \(r=\frac{4}{1-\cos \theta}\) (b) \(r=\frac{4}{1-\sin \theta}\) (c) \(r=\frac{4}{1+\cos \theta}\) (d) \(r=\frac{4}{1-\sin (\theta-\pi / 4)}\)
In Exercises 47 and 48, use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis. $$ r=4 \cos 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{4} $$
Use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis. $$ r=\theta, \quad 0 \leq \theta \leq \pi $$
In Exercises 43-46, find the area of the surface formed by revolving the curve about the given line. $$ \begin{array}{lll} \underline{\text { Polar Equation }} & \underline{\text { Interval }} & \underline{\text { Axis of Revolution }} \\ r=e^{a \theta} & 0 \leq \theta \leq \frac{\pi}{2} & \theta=\frac{\pi}{2} \end{array} $$
Show that the polar equation for \(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\) is \(r^{2}=\frac{b^{2}}{1-e^{2} \cos ^{2} \theta} \cdot \quad\) Ellipse
What do you think about this solution?
We value your feedback to improve our textbook solutions.