Chapter 8: Problem 49
Give the integral formulas for area and arc length in polar coordinates.
Chapter 8: Problem 49
Give the integral formulas for area and arc length in polar coordinates.
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Parabola }} \quad \frac{\text { Eccentricity }}{e=1} \quad \frac{\text { Directrix }}{x=1}\)
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=4 \sin 2 \theta, y=2 \cos 2 \theta $$
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=4 \sec \theta, \quad y=3 \tan \theta $$
Describe what happens to the distance between the directrix and the center of an ellipse if the foci remain fixed and \(e\) approaches 0 .
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=e^{-t}, \quad y=e^{2 t}-1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.