Chapter 8: Problem 48
Use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis. $$ r=\theta, \quad 0 \leq \theta \leq \pi $$
Chapter 8: Problem 48
Use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis. $$ r=\theta, \quad 0 \leq \theta \leq \pi $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=2 t^{2}, \quad y=t^{4}+1 $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{-6}{3+7 \sin \theta}\)
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=2 \cos \theta, \quad y=6 \sin \theta $$
Determine any differences between the curves of the parametric equations. Are the graphs the same? Are the orientations the same? Are the curves smooth? $$ \text { (a) } \begin{aligned} x &=2 \cos \theta \\ y &=2 \sin \theta \end{aligned} $$ $$ \begin{aligned} &\text { (b) } x=\sqrt{4 t^{2}-1} /|t|\\\ &y=1 / t \end{aligned} $$ $$ \text { (c) } \begin{aligned} x &=\sqrt{t} \\ y &=\sqrt{4-t} \end{aligned} $$ $$ \text { (d) } \begin{aligned} x &=-\sqrt{4-e^{2 t}} \\ y &=e^{t} \end{aligned} $$
In Exercises \(17-20,\) use a graphing utility to graph the polar equation. Identify the graph. \(r=\frac{2}{2+3 \sin \theta}\)
What do you think about this solution?
We value your feedback to improve our textbook solutions.