Chapter 8: Problem 45
Find the arc length of the curve on the given interval. $$ x=t^{2}, \quad y=2 t \quad 0 \leq t \leq 2 $$
Chapter 8: Problem 45
Find the arc length of the curve on the given interval. $$ x=t^{2}, \quad y=2 t \quad 0 \leq t \leq 2 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises 43-46, find the area of the surface formed by revolving the curve about the given line. $$ \begin{array}{lll} \underline{\text { Polar Equation }} & \underline{\text { Interval }} & \underline{\text { Axis of Revolution }} \\ r=e^{a \theta} & 0 \leq \theta \leq \frac{\pi}{2} & \theta=\frac{\pi}{2} \end{array} $$
The curve represented by the equation \(r=a \theta,\) where \(a\) is a constant, is called the spiral of Archimedes. (a) Use a graphing utility to graph \(r=\theta,\) where \(\theta \geq 0\). What happens to the graph of \(r=a \theta\) as \(a\) increases? What happens if \(\theta \leq 0 ?\) (b) Determine the points on the spiral \(r=a \theta(a>0, \theta \geq 0)\) where the curve crosses the polar axis. (c) Find the length of \(r=\theta\) over the interval \(0 \leq \theta \leq 2 \pi\). (d) Find the area under the curve \(r=\theta\) for \(0 \leq \theta \leq 2 \pi\).
In Exercises \(17-20,\) use a graphing utility to graph the polar equation. Identify the graph. \(r=\frac{2}{2+3 \sin \theta}\)
Writing Consider the polar equation \(r=\frac{4}{1+e \sin \theta} .\) (a) Use a graphing utility to graph the equation for \(e=0.1\), \(e=0.25, e=0.5, e=0.75,\) and \(e=0.9 .\) Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{-}\) and \(e \rightarrow 0^{+}\) (b) Use a graphing utility to graph the equation for \(e=1\). Identify the conic. (c) Use a graphing utility to graph the equation for \(e=1.1\), \(e=1.5,\) and \(e=2 .\) Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{+}\) and \(e \rightarrow \infty\).
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Prolate cycloid: } x=2 \theta-4 \sin \theta, \quad y=2-4 \cos \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.