Chapter 8: Problem 37
Determine the \(t\) intervals on which the curve is concave downward or concave upward. $$ x=2 t+\ln t, \quad y=2 t-\ln t $$
Chapter 8: Problem 37
Determine the \(t\) intervals on which the curve is concave downward or concave upward. $$ x=2 t+\ln t, \quad y=2 t-\ln t $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=e^{-t}, \quad y=e^{2 t}-1 $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r(2+\sin \theta)=4\)
In Exercises 43-46, find the area of the surface formed by revolving the curve about the given line. $$ \begin{array}{lll} \underline{\text { Polar Equation }} & \underline{\text { Interval }} & \underline{\text { Axis of Revolution }} \\ r=6 \cos \theta & 0 \leq \theta \leq \frac{\pi}{2} & \text { Polar axis } \end{array} $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{-6}{3+7 \sin \theta}\)
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Hypocycloid: } x=3 \cos ^{3} \theta, \quad y=3 \sin ^{3} \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.