Chapter 8: Problem 32
Eliminate the parameter and obtain the standard form of the rectangular equation. $$ \text { Circle: } x=h+r \cos \theta, \quad y=k+r \sin \theta $$
Chapter 8: Problem 32
Eliminate the parameter and obtain the standard form of the rectangular equation. $$ \text { Circle: } x=h+r \cos \theta, \quad y=k+r \sin \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeSketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=\sqrt[4]{t}, \quad y=3-t $$
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Prolate cycloid: } x=2 \theta-4 \sin \theta, \quad y=2-4 \cos \theta $$
In Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Ellipse }} \quad \frac{\text { Eccentricity }}{e=\frac{1}{2}} \quad \frac{\text { Directrix }}{x=1}\)
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=2 t, \quad y=|t-2| $$
In Exercises 57 and \(58,\) let \(r_{0}\) represent the distance from the focus to the nearest vertex, and let \(r_{1}\) represent the distance from the focus to the farthest vertex. Show that the eccentricity of a hyperbola can be written as \(e=\frac{r_{1}+r_{0}}{r_{1}-r_{0}} .\) Then show that \(\frac{r_{1}}{r_{0}}=\frac{e+1}{e-1}\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.