Warning: foreach() argument must be of type array|object, bool given in /var/www/html/web/app/themes/studypress-core-theme/template-parts/header/mobile-offcanvas.php on line 20

Convert the polar equation to rectangular form and sketch its graph. $$ \theta=\frac{5 \pi}{6} $$

Short Answer

Expert verified
The equivalent rectangular equation of \(\theta = \frac{5\pi}{6}\) is a straight line passing through the origin making an angle of \(\frac{5\pi}{6}\) radians with the positive x-axis.

Step by step solution

01

Understand the polar coordinate system

In the polar coordinate system, a point is specified by the radius \(r\) and the angle \(\theta\) formed with the positive x-axis. Based on this understanding, when given \(\theta = \frac{5\pi}{6}\), it informs us that the angle from the positive x-axis is constant and equals \(\frac{5\pi}{6}\).
02

Convert to rectangular form

The conversion from polar coordinates \((r, \theta)\) to rectangular coordinates \((x, y)\) generally involves applying the equations \(x = r\cos(\theta)\) and \(y = r\sin(\theta)\). However, as our equation only involves \(\theta\), and it is constant, we do not have an equation to convert. Instead, we note that the result of our conversion will be a line of constant \(\theta\).
03

Sketch the line

The line with \(\theta = \frac{5\pi}{6}\) in the polar coordinate system is a line that includes all points that form an angle of \(\frac{5\pi}{6}\) with the positive x-axis. In other words, we should draw a straight line from the origin making an angle of \(\frac{5\pi}{6}\) radians, or 150 degrees, with the positive x-axis.

Unlock Step-by-Step Solutions & Ace Your Exams!

  • Full Textbook Solutions

    Get detailed explanations and key concepts

  • Unlimited Al creation

    Al flashcards, explanations, exams and more...

  • Ads-free access

    To over 500 millions flashcards

  • Money-back guarantee

    We refund you if you fail your exam.

Over 30 million students worldwide already upgrade their learning with Vaia!

One App. One Place for Learning.

All the tools & learning materials you need for study success - in one app.

Get started for free

Most popular questions from this chapter

Consider the circle \(r=3 \sin \theta\) (a) Find the area of the circle. (b) Complete the table giving the areas \(A\) of the sectors of the circle between \(\theta=0\) and the values of \(\theta\) in the table. $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{\theta} & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 \\ \hline \boldsymbol{A} & & & & & & & \\ \hline \end{array} $$ (c) Use the table in part (b) to approximate the values of \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4},\) and \(\frac{1}{2}\) of the total area of the circle. (d) Use a graphing utility to approximate, to two decimal places, the angles \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4},\) and \(\frac{1}{2}\) of the total area of the circle.

Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=t^{3}, \quad y=\frac{t^{2}}{2} $$

In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r(2+\sin \theta)=4\)

Use the results of Exercises \(31-34\) to find a set of parametric equations for the line or conic. $$ \text { Ellipse: vertices: }(\pm 5,0) ; \text { foci: }(\pm 4,0) $$

Writing Consider the polar equation \(r=\frac{4}{1+e \sin \theta} .\) (a) Use a graphing utility to graph the equation for \(e=0.1\), \(e=0.25, e=0.5, e=0.75,\) and \(e=0.9 .\) Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{-}\) and \(e \rightarrow 0^{+}\) (b) Use a graphing utility to graph the equation for \(e=1\). Identify the conic. (c) Use a graphing utility to graph the equation for \(e=1.1\), \(e=1.5,\) and \(e=2 .\) Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{+}\) and \(e \rightarrow \infty\).

See all solutions

Recommended explanations on Math Textbooks

View all explanations

What do you think about this solution?

We value your feedback to improve our textbook solutions.

Study anywhere. Anytime. Across all devices.

Sign-up for free