Chapter 8: Problem 32
Convert the polar equation to rectangular form and sketch its graph. $$ \theta=\frac{5 \pi}{6} $$
Chapter 8: Problem 32
Convert the polar equation to rectangular form and sketch its graph. $$ \theta=\frac{5 \pi}{6} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider the circle \(r=3 \sin \theta\) (a) Find the area of the circle. (b) Complete the table giving the areas \(A\) of the sectors of the circle between \(\theta=0\) and the values of \(\theta\) in the table. $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{\theta} & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 \\ \hline \boldsymbol{A} & & & & & & & \\ \hline \end{array} $$ (c) Use the table in part (b) to approximate the values of \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4},\) and \(\frac{1}{2}\) of the total area of the circle. (d) Use a graphing utility to approximate, to two decimal places, the angles \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4},\) and \(\frac{1}{2}\) of the total area of the circle.
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=t^{3}, \quad y=\frac{t^{2}}{2} $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r(2+\sin \theta)=4\)
Use the results of Exercises \(31-34\) to find a set of parametric equations for the line or conic. $$ \text { Ellipse: vertices: }(\pm 5,0) ; \text { foci: }(\pm 4,0) $$
Writing Consider the polar equation \(r=\frac{4}{1+e \sin \theta} .\) (a) Use a graphing utility to graph the equation for \(e=0.1\), \(e=0.25, e=0.5, e=0.75,\) and \(e=0.9 .\) Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{-}\) and \(e \rightarrow 0^{+}\) (b) Use a graphing utility to graph the equation for \(e=1\). Identify the conic. (c) Use a graphing utility to graph the equation for \(e=1.1\), \(e=1.5,\) and \(e=2 .\) Identify the conic and discuss the change in its shape as \(e \rightarrow 1^{+}\) and \(e \rightarrow \infty\).
What do you think about this solution?
We value your feedback to improve our textbook solutions.