Chapter 8: Problem 31
Convert the polar equation to rectangular form and sketch its graph. $$ r=\theta $$
Chapter 8: Problem 31
Convert the polar equation to rectangular form and sketch its graph. $$ r=\theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeConsider a projectile launched at a height \(h\) feet above the ground and at an angle \(\theta\) with the horizontal. If the initial velocity is \(v_{0}\) feet per second, the path of the projectile is modeled by the parametric equations \(x=\left(v_{0} \cos \theta\right) t\) and \(y=h+\left(v_{0} \sin \theta\right) t-16 t^{2}\) The center field fence in a ballpark is 10 feet high and 400 feet from home plate. The ball is hit 3 feet above the ground. It leaves the bat at an angle of \(\theta\) degrees with the horizontal at a speed of 100 miles per hour (see figure). (a) Write a set of parametric equations for the path of the ball. (b) Use a graphing utility to graph the path of the ball when \(\theta=15^{\circ} .\) Is the hit a home run? (c) Use a graphing utility to graph the path of the ball when \(\theta=23^{\circ} .\) Is the hit a home run? (d) Find the minimum angle at which the ball must leave the bat in order for the hit to be a home run.
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=\sqrt{t}, \quad y=t-2 $$
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=4 \sin 2 \theta, y=2 \cos 2 \theta $$
Determine any differences between the curves of the parametric equations. Are the graphs the same? Are the orientations the same? Are the curves smooth? (a) \(x=t+1, y=t^{3}\) (b) \(x=-t+1, y=(-t)^{3}\)
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=t^{3}, \quad y=3 \ln t $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.