Chapter 8: Problem 30
Convert the polar equation to rectangular form and sketch its graph. $$ r=5 \cos \theta $$
Chapter 8: Problem 30
Convert the polar equation to rectangular form and sketch its graph. $$ r=5 \cos \theta $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIdentify each conic. (a) \(r=\frac{5}{1-2 \cos \theta}\) (b) \(r=\frac{5}{10-\sin \theta}\) (c) \(r=\frac{5}{3-3 \cos \theta}\) (d) \(r=\frac{5}{1-3 \sin (\theta-\pi / 4)}\)
Give the integral formulas for area and arc length in polar coordinates.
$$ \text { State the definition of a smooth curve } $$
Conjecture (a) Use a graphing utility to graph the curves represented by the two sets of parametric equations. \(x=4 \cos t \quad x=4 \cos (-t)\) \(y=3 \sin t \quad y=3 \sin (-t)\) (b) Describe the change in the graph when the sign of the parameter is changed. (c) Make a conjecture about the change in the graph of parametric equations when the sign of the parameter is changed. (d) Test your conjecture with another set of parametric equations.
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Folium of Descartes: } x=\frac{3 t}{1+t^{3}}, \quad y=\frac{3 t^{2}}{1+t^{3}} $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.