Chapter 8: Problem 3
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=t^{3}, \quad y=\frac{t^{2}}{2} $$
Chapter 8: Problem 3
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=t^{3}, \quad y=\frac{t^{2}}{2} $$
All the tools & learning materials you need for study success - in one app.
Get started for freeIn Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Hyperbola }} \quad \frac{\text { Eccentricity }}{e=\frac{3}{2}} \quad \frac{\text { Directrix }}{x=-1}\)
In Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Ellipse }} \quad \frac{\text { Eccentricity }}{e=\frac{1}{2}} \quad \frac{\text { Directrix }}{x=1}\)
In Exercises 43-46, find the area of the surface formed by revolving the curve about the given line. $$ \begin{array}{lll} \underline{\text { Polar Equation }} & \underline{\text { Interval }} & \underline{\text { Axis of Revolution }} \\ r=e^{a \theta} & 0 \leq \theta \leq \frac{\pi}{2} & \theta=\frac{\pi}{2} \end{array} $$
In Exercises 43-46, find the area of the surface formed by revolving the curve about the given line. $$ \begin{array}{lll} \underline{\text { Polar Equation }} & \underline{\text { Interval }} & \underline{\text { Axis of Revolution }} \\ r=6 \cos \theta & 0 \leq \theta \leq \frac{\pi}{2} & \text { Polar axis } \end{array} $$
Write a short paragraph describing how the graphs of curves represented by different sets of parametric equations can differ even though eliminating the parameter from each yields the same rectangular equation.
What do you think about this solution?
We value your feedback to improve our textbook solutions.