Chapter 8: Problem 28
Determine any differences between the curves of the parametric equations. Are the graphs the same? Are the orientations the same? Are the curves smooth? (a) \(x=t+1, y=t^{3}\) (b) \(x=-t+1, y=(-t)^{3}\)
Chapter 8: Problem 28
Determine any differences between the curves of the parametric equations. Are the graphs the same? Are the orientations the same? Are the curves smooth? (a) \(x=t+1, y=t^{3}\) (b) \(x=-t+1, y=(-t)^{3}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to graph the polar equation over the given interval. Use the integration capabilities of the graphing utility to approximate the length of the curve accurate to two decimal places. $$ r=2 \sin (2 \cos \theta), \quad 0 \leq \theta \leq \pi $$
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{3}{2+6 \sin \theta}\)
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=t^{2}+t, \quad y=t^{2}-t $$
Give the integral formulas for area and arc length in polar coordinates.
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=1+\frac{1}{t}, \quad y=t-1 $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.