Chapter 8: Problem 25
Convert the rectangular equation to polar form and sketch its graph. $$ y^{2}=9 x $$
Chapter 8: Problem 25
Convert the rectangular equation to polar form and sketch its graph. $$ y^{2}=9 x $$
All the tools & learning materials you need for study success - in one app.
Get started for freeUse a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ \begin{array}{l} x=4+2 \cos \theta \\ y=-1+\sin \theta \end{array} $$
Use a graphing utility to graph the curve represented by the parametric equations. Indicate the direction of the curve. Identify any points at which the curve is not smooth. $$ \text { Folium of Descartes: } x=\frac{3 t}{1+t^{3}}, \quad y=\frac{3 t^{2}}{1+t^{3}} $$
In Exercises \(27-38,\) find a polar equation for the conic with its focus at the pole. (For convenience, the equation for the directrix is given in rectangular form.) \(\frac{\text { Conic }}{\text { Parabola }} \quad \frac{\text { Eccentricity }}{e=1} \quad \frac{\text { Directrix }}{x=1}\)
Determine any differences between the curves of the parametric equations. Are the graphs the same? Are the orientations the same? Are the curves smooth? $$ \text { (a) } \begin{array}{l} x=\cos \theta \\ y=2 \sin ^{2} \theta \\ 0<\theta<\pi \end{array} $$ $$ \text { (b) } \begin{aligned} x &=\cos (-\theta) \\ y &=2 \sin ^{2}(-\theta) \\ 0 &<\theta<\pi \end{aligned} $$
Use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis. $$ r=\theta, \quad 0 \leq \theta \leq \pi $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.