Chapter 8: Problem 13
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{5}{-1+2 \cos \theta}\)
Chapter 8: Problem 13
In Exercises \(7-16,\) find the eccentricity and the distance from the pole to the directrix of the conic. Then sketch and identify the graph. Use a graphing utility to confirm your results. \(r=\frac{5}{-1+2 \cos \theta}\)
All the tools & learning materials you need for study success - in one app.
Get started for freeConjecture (a) Use a graphing utility to graph the curves represented by the two sets of parametric equations. \(x=4 \cos t \quad x=4 \cos (-t)\) \(y=3 \sin t \quad y=3 \sin (-t)\) (b) Describe the change in the graph when the sign of the parameter is changed. (c) Make a conjecture about the change in the graph of parametric equations when the sign of the parameter is changed. (d) Test your conjecture with another set of parametric equations.
In Exercises 47 and 48, use the integration capabilities of a graphing utility to approximate to two decimal places the area of the surface formed by revolving the curve about the polar axis. $$ r=4 \cos 2 \theta, \quad 0 \leq \theta \leq \frac{\pi}{4} $$
Find the surface area of the torus generated by revolving the circle given by \(r=2\) about the line \(r=5 \sec \theta\)
Use a graphing utility to graph the polar equation over the given interval. Use the integration capabilities of the graphing utility to approximate the length of the curve accurate to two decimal places. $$ r=2 \sin (2 \cos \theta), \quad 0 \leq \theta \leq \pi $$
Use a graphing utility to graph the curve represented by the parametric equations (indicate the orientation of the curve). Eliminate the parameter and write the corresponding rectangular equation. $$ x=\cos ^{3} \theta, \quad y=\sin ^{3} \theta $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.