Chapter 8: Problem 1
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=3 t-1, \quad y=2 t+1 $$
Chapter 8: Problem 1
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=3 t-1, \quad y=2 t+1 $$
All the tools & learning materials you need for study success - in one app.
Get started for freeExplain why finding points of intersection of polar graphs may require further analysis beyond solving two equations simultaneously
Sketch the curve represented by the parametric equations (indicate the orientation of the curve), and write the corresponding rectangular equation by eliminating the parameter. $$ x=\sqrt[4]{t}, \quad y=3-t $$
Consider the circle \(r=3 \sin \theta\) (a) Find the area of the circle. (b) Complete the table giving the areas \(A\) of the sectors of the circle between \(\theta=0\) and the values of \(\theta\) in the table. $$ \begin{array}{|l|l|l|l|l|l|l|l|} \hline \boldsymbol{\theta} & 0.2 & 0.4 & 0.6 & 0.8 & 1.0 & 1.2 & 1.4 \\ \hline \boldsymbol{A} & & & & & & & \\ \hline \end{array} $$ (c) Use the table in part (b) to approximate the values of \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4},\) and \(\frac{1}{2}\) of the total area of the circle. (d) Use a graphing utility to approximate, to two decimal places, the angles \(\theta\) for which the sector of the circle composes \(\frac{1}{8}, \frac{1}{4},\) and \(\frac{1}{2}\) of the total area of the circle.
Find two different sets of parametric equations for the rectangular equation. $$ y=x^{2} $$
A curve called the folium of Descartes can be represented by the parametric equations \(x=\frac{3 t}{1+t^{3}} \quad\) and \(y=\frac{3 t^{2}}{1+t^{3}}\) (a) Convert the parametric equations to polar form. (b) Sketch the graph of the polar equation from part (a). (c) Use a graphing utility to approximate the area enclosed by the loop of the curve.
What do you think about this solution?
We value your feedback to improve our textbook solutions.