Chapter 7: Problem 86
State the Limit Comparison Test and give an example of its use.
Chapter 7: Problem 86
State the Limit Comparison Test and give an example of its use.
All the tools & learning materials you need for study success - in one app.
Get started for freeThe ball in Exercise 95 takes the following times for each fall. $$ \begin{array}{ll} s_{1}=-16 t^{2}+16, & s_{1}=0 \text { if } t=1 \\ s_{2}=-16 t^{2}+16(0.81), & s_{2}=0 \text { if } t=0.9 \\ s_{3}=-16 t^{2}+16(0.81)^{2}, & s_{3}=0 \text { if } t=(0.9)^{2} \\ s_{4}=-16 t^{2}+16(0.81)^{3}, & s_{4}=0 \text { if } t=(0.9)^{3} \end{array} $$ \(\vdots\) $$ s_{n}=-16 t^{2}+16(0.81)^{n-1}, \quad s_{n}=0 \text { if } t=(0.9)^{n-1} $$ Beginning with \(s_{2}\), the ball takes the same amount of time to bounce up as it does to fall, and so the total time elapsed before it comes to rest is given by \(t=1+2 \sum_{n=1}^{\infty}(0.9)^{n}\) Find this total time.
Consider the formula \(\frac{1}{x-1}=1+x+x^{2}+x^{3}+\cdots\) Given \(x=-1\) and \(x=2\), can you conclude that either of the following statements is true? Explain your reasoning. (a) \(\frac{1}{2}=1-1+1-1+\cdots\) (b) \(-1=1+2+4+8+\cdots\)
Use a graphing utility to determine the first term that is less than 0.0001 in each of the convergent series. Note that the answers are very different. Explain how this will affect the rate at which each series converges. $$ \sum_{n=1}^{\infty} \frac{1}{2^{n}}, \quad \sum_{n=1}^{\infty}(0.01)^{n} $$
Find the sum of the convergent series. $$ \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} $$
Find the sum of the convergent series. $$ 3-1+\frac{1}{3}-\frac{1}{9}+\cdots $$
What do you think about this solution?
We value your feedback to improve our textbook solutions.