Chapter 7: Problem 85
State the Direct Comparison Test and give an example of its use
Chapter 7: Problem 85
State the Direct Comparison Test and give an example of its use
All the tools & learning materials you need for study success - in one app.
Get started for freeGiven two infinite series \(\sum a_{n}\) and \(\sum b_{n}\) such that \(\sum a_{n}\) converges and \(\sum b_{n}\) diverges, prove that \(\sum\left(a_{n}+b_{n}\right)\) diverges.
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} \arctan n $$
Find all values of \(x\) for which the series converges. For these values of \(x,\) write the sum of the series as a function of \(x\). $$ \sum_{n=0}^{\infty} 4\left(\frac{x-3}{4}\right)^{n} $$
(a) Show that \(\int_{1}^{n} \ln x d x<\ln (n !)\) for \(n \geq 2\).
(b) Draw a graph similar to the one above that shows
\(\ln (n !)<\int_{1}^{n+1} \ln x d x\)
(c) Use the results of parts (a) and (b) to show that
\(\frac{n^{n}}{e^{n-1}}
The annual spending by tourists in a resort city is \(\$ 100\) million. Approximately \(75 \%\) of that revenue is again spent in the resort city, and of that amount approximately \(75 \%\) is again spent in the same city, and so on. Write the geometric series that gives the total amount of spending generated by the \(\$ 100\) million and find the sum of the series.
What do you think about this solution?
We value your feedback to improve our textbook solutions.