Chapter 7: Problem 83
Define a \(p\) -series and state the requirements for its convergence.
Chapter 7: Problem 83
Define a \(p\) -series and state the requirements for its convergence.
All the tools & learning materials you need for study success - in one app.
Get started for freeDetermine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty}\left(\frac{1}{n}-\frac{1}{n+2}\right) $$
Modeling Data The annual sales \(a_{n}\) (in millions of dollars) for Avon Products, Inc. from 1993 through 2002 are given below as ordered pairs of the form \(\left(n, a_{n}\right),\) where \(n\) represents the year, with \(n=3\) corresponding to 1993. (Source: 2002 Avon Products, Inc. Annual Report) (3,3844),(4,4267),(5,4492),(6,4814),(7,5079) (8,5213),(9,5289),(10,5682),(11,5958),(12,6171) (a) Use the regression capabilities of a graphing utility to find a model of the form \(a_{n}=b n+c, \quad n=3,4, \ldots, 12\) for the data. Graphically compare the points and the model. (b) Use the model to predict sales in the year 2008 .
Consider the sequence \(\sqrt{2}, \sqrt{2+\sqrt{2}}, \sqrt{2+\sqrt{2+\sqrt{2}}}, \ldots\) (a) Compute the first five terms of this sequence. (b) Write a recursion formula for \(a_{n}, n \geq 2\). (c) Find \(\lim _{n \rightarrow \infty} a_{n}\).
The random variable \(\boldsymbol{n}\) represents the number of units of a product sold per day in a store. The probability distribution of \(n\) is given by \(P(n) .\) Find the probability that two units are sold in a given day \([P(2)]\) and show that \(P(1)+P(2)+P(3)+\cdots=1\). $$ P(n)=\frac{1}{3}\left(\frac{2}{3}\right)^{n} $$
Prove that the series \(\sum_{n=1}^{\infty} \frac{1}{1+2+3+\cdots+n}\) converges.
What do you think about this solution?
We value your feedback to improve our textbook solutions.