Chapter 7: Problem 78
Let \(\left\\{a_{n}\right\\}\) be a monotonic sequence such that \(a_{n} \leq 1\). Discuss the convergence of \(\left\\{a_{n}\right\\} .\) If \(\left\\{a_{n}\right\\}\) converges, what can you conclude about its limit?
Chapter 7: Problem 78
Let \(\left\\{a_{n}\right\\}\) be a monotonic sequence such that \(a_{n} \leq 1\). Discuss the convergence of \(\left\\{a_{n}\right\\} .\) If \(\left\\{a_{n}\right\\}\) converges, what can you conclude about its limit?
All the tools & learning materials you need for study success - in one app.
Get started for freeFind the sum of the convergent series. $$ \sum_{n=0}^{\infty}\left(-\frac{1}{2}\right)^{n} $$
Determine whether the statement is true or false. If it is false, explain why or give an example that shows it is false. If \(n>1\), then \(n !=n(n-1) !\)
Find the values of \(x\) for which the infinite series \(1+2 x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+x^{6}+\cdots\) converges. What is the sum when the series converges?
Determine the convergence or divergence of the series. $$ \sum_{n=1}^{\infty} e^{-n} $$
Write \(\sum_{k=1}^{\infty} \frac{6^{k}}{\left(3^{k+1}-2^{k+1}\right)\left(3^{k}-2^{k}\right)}\) as a rational number.
What do you think about this solution?
We value your feedback to improve our textbook solutions.